新浪微博 | 在线报名 | 联系我们

0769-88031189
0769-86211992

欢迎光临东莞市华科教育发展研究院,真诚为您服务!
当前位置:首页 > 教育资讯 > 行业资讯 > 数学 | 80%的人都会在这些知识点上犯错行业资讯

数学 | 80%的人都会在这些知识点上犯错

来源: 点击次数:次 更新时间:2020-11-07 14:03

同学们,还有四天的时间就要进入11月份了,冲刺马上就要开始了,大家做好准备了吗?

 

如果是最让人“心虚”的课程,数学肯定能占有一席之地,尤其是一些容易混淆的定理。高数作为重头大戏,容易错的地方更不少,一起来看看!

 

高等数学

1、函数在一点处极限存在,连续,可导,可微之间关系。

对于一元函数函数连续是函数极限存在的充分条件。

若函数在某点连续,则该函数在该点必有极限。

若函数在某点不连续,则该函数在该点不一定无极限。

若函数在某点可导,则函数在该点一定连续。

但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等价。

而对于二元函数,只能又可微推连续和可导(偏导都存在),其余都不成立。

 

2、基本初等函数与初等函数的连续性

基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

3、极值点,拐点。驻点与极值点的关系

在一元函数中,驻点可能是极值点,也可能不是极值点,而函数的极值点必是函数的驻点或导数不存在的点。注意极值点和拐点的定义一充、二充、和必要条件。

4、夹逼定理和用定积分定义求极限

这两种方法都可以用来求和式极限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量与有界量之积仍是无穷小量。

5、可导是对定义域内的点而言的

处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

6、比较积分的大小

定积分比较定理的应用(常用画图法),多重积分的比较,特别注意第二类曲线积分,曲面积分不可直接比较大小。

7、多元函数求导

抽象型的多元函数求导,反函数求导(高阶),参数方程的二阶导,以及与变限积分函数结合的求导

8、介值定理和零点定理的应用

介值定理和零点定理的应用。关键在于观察和变换所要证明等式的形式,构造辅助函数。

9、保号性

保号性。极限的性质中最重要的就是保号性,注意保号性的两种形式以及成立的条件。

10、第二类曲线积分和第二类曲面积分

在求解的过程中一般会使用格林公式和高斯公式,大部分同学都会把精力关注在是否闭合,偏导是否连续上,而忘记了第三个条件——方向,要引起注意。

 

0